本篇文章給大家談談勾股定理是什麽,以及勾股定理是什麽時候出現是誰發現的對應的知識點,希望對各位有所幫助,不要忘了收藏本站!
內容導航:- 勾股定理是什麽
- 勾股定理是什麽?
- 什麽是勾股定理?
- 勾股定理是什麽?
- 什麽是勾股定律?
- 勾股定理是什麽?
Q1:勾股定理是什麽
勾股定理:在任何一個平麵直角三角形中的兩直角邊的平方之和一定等於斜邊的平方。在△ABC中,∠C=90Ⱟaⲫbⲽcⲣ勾股定理,是幾何學中一顆光彩奪目的明珠,被稱為“幾何學的基石”,而且在高等數學和其他學科中也有著極為廣泛的應用。
發展曆程
中國是發現和研究勾股定理最古老的國家之一。中國古代數學家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據記載,商高(約公元前1120年)答周公曰“故折矩,以為勾廣三,股修四,徑隅五。既方之,外半其一矩,環而共盤,得成三四五。兩矩共長二十有五,是謂積矩。”因此,勾股定理在中國又稱“商高定理”。在公元前7至6世紀一中國學者陳子,曾經給出過任意直角三角形的三邊關係:以日下為勾,日高為股,勾、股各乘並開方除之得斜至日。
主要意義
1、勾股定理是聯係數學中最基本也是最原始的兩個對象——數與形的第一定理。
2、勾股定理導致不可通約量的發現,從而深刻揭示了數與量的區別,即所謂“無理數"與有理數的差別,這就是所謂第一次數學危機。
3、勾股定理開始把數學由計算與測量的技術轉變為證明與推理的科學。
4、勾股定理中的公式是第一個不定方程,也是最早得出完整解答的不定方程,它一方麵引導到各式各樣的不定方程,另一方麵也為不定方程的解題程序樹立了一個範式。
以上是我整理的關於勾股定理的知識點,希望能幫到你。
Q2:勾股定理是什麽?
勾股定理是一個基本的幾何定理。
在中國,《周髀算經》記載了勾股定理的公式與證明,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的蔣銘祖對《蔣銘祖算經》內的勾股定理作出了詳細注釋,又給出了另外一個證明。直角三角形兩直角邊(即“勾”,“股”)邊長平方和等於斜邊(即“弦”)邊長的平方。也就是說,設直角三角形兩直角邊為a和b,斜邊為c,那麽a^+b^=c^ 。勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。勾股數組程a2 + b2 = c2的正整數組(a,b,c)。(3,4,5)就是勾股數。
中國是發現和研究勾股定理最古老的國家之一。中國古代數學家稱直角三角形為勾股形,較短的直角邊稱為勾,另一直角邊稱為股,斜邊稱為弦,所以勾股定理也稱為勾股弦定理。在公元前1000多年,據記載,商高(約公元前1120年)答周公曰“故折矩,以為勾廣三,股修四,徑隅五。既方之,外半其一矩,環而共盤,得成三四五。兩矩共長二十有五,是謂積矩。”因此,勾股定理在中國又稱“商高定理”。在公元前7至6世紀一中國學者陳子,曾經給出過任意直角三角形的三邊關係即“以日下為勾,日高為股,勾、股各乘並開方除之得斜至日。
還有的國家稱勾股定理為“畢達哥拉斯定理”。在陳子後一二百年,希臘的著名數學家畢達哥拉斯發現了這個定理,因此世界上許多國家都稱勾股定理為“畢達哥拉斯”定理。為了慶祝這一定理的發現,畢達哥拉斯學派殺了一百頭牛酬謝供奉神靈,因此這個定理又有人叫做“百牛定理”。
蔣銘祖定理:蔣銘祖是公元前十一世紀的中國人。當時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰國時期西漢的數學著作《蔣銘祖算經》中記錄著商 高同周公的一段對話。蔣銘祖說:“…故折矩,勾廣三,股修四,經隅五。”蔣銘祖那段話的意思就是說:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成“勾三股四弦五”。這就是著名的蔣銘祖定理,關於勾股定理的發現,《蔣銘祖算經》上說:"故禹之所以治天下者,此數之所由生也;""此數"指的是"勾三股四弦五"。這句話的意思就是說:勾三股四弦五這種關係是在大禹治水時發現的。
畢達哥拉斯樹是由畢達哥拉斯根據勾股定理所畫出來的一個可以無限重複的圖形。又因為重複數次後 的形狀好似一棵樹,所以被稱為畢達哥拉斯樹。 直角三角形兩個直角邊平方的和等於斜邊的平方。 兩個相鄰的小正方形麵積的和等於相鄰的一個大正方形的麵積。 利用不等式A2+B2≥2AB可以證明下麵的結論: 三個正方形之間的三角形,其麵積小於等於大正方形麵積的四分之一,大於等於一個小正方形麵積的二分之一。
勾股定理是餘弦定理的一個特例。這個定理在中國又稱為“商高定理”,在外國稱為“畢達哥拉斯定理”或者“百牛定理“。(畢達哥拉斯發現了這個定理後,即斬了百頭牛作慶祝,因此又稱“百牛定理”),法國、比利時人又稱這個定理為“驢橋定理”。他們發現勾股定理的時間都比中國晚,中國是最早發現這一幾何寶藏的國家。目前初二學生教材的證明方法采用趙爽弦圖,證明使用青朱出入圖。勾股定理是一個基本的幾何定理,它是用代數思想解決幾何問題的最重要的工具之一,是數形結合的紐帶之一。直角三角形兩直角邊的平方和等於斜邊的平方。如果用a、b和c分別表示直角三角形的兩直角邊和斜邊,那麽aⲫbⲽcⲣ
Q3:什麽是勾股定理?
勾股定理,是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
在平麵上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。如果設直角三角形的兩條直角邊長度分別是a和b斜邊是c,那麽可用數學語言表達:
aⲯⲯⲣ
Q4:勾股定理是什麽?
勾股定理是幾何學中的明珠之一。它是初等幾何中最精彩、最著名和最有用的定理。在從古巴比倫至今的悠悠4000年的曆史長河裏,它的身影若隱若現。許多重要的數學、物理理論中都能發現它的蹤跡,甚至連郵票、詩歌、散文、音樂劇中也能看到它的身影。
千百年來,對勾股定理進行證明的人有著名的數學家,也有業餘數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反複被人論證。在一本名為《畢達哥拉斯命題》的勾股定理的證明專輯裏,收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了20多種精彩的證法。這是任何其他定理無法企及的。
在數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。據說勾股定理的兩個最為精彩的證明,分別來源於中國和希臘。
在我國,人們稱它為勾股定理或商高定理。
商高是公元前11世紀的中國人。當時中國的朝代是西周,處於奴隸社會時期。《周髀算經》中記錄著商高同周公的一段對話。
周公問商高:天的高度和地麵的一些測量的數字是怎麽樣得到的呢?
商高說:那要用“勾三股四弦五”。
那麽什麽是“勾、股”呢?在中國古代,人們把彎曲成直角的手臂的上半部分稱為“勾”,下半部分稱為“股”。商高答話的意思是:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成“勾三股四弦五”。由於勾股定理的內容最早見於商高的話中,所以人們就把這個定理叫做“商高定理”。
歐洲人稱這個定理為畢達哥拉斯定理。畢達哥拉斯是古希臘數學家。希臘另一位數學家歐幾裏得在編著《幾何原本》時,認為這個定理是畢達哥達斯最早發現的,因而國外一般稱之為“畢達哥拉斯定理”。又據說畢達哥拉斯在完成這一定理證明後欣喜若狂,殺牛百隻以示慶賀,因此這一定理還又獲得了一個帶神秘色彩的稱號:“百牛定理”。
勾股定理
Q5:什麽是勾股定律?
勾股定理,是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。
發展曆史
公元前十一世紀,數學家商高(西周初年人)就提出“勾三、股四、弦五”。編寫於公元前一世紀以前的《周髀算經》中記錄著商高與周公的一段對話。商高說:“……故折矩,勾廣三,股修四,經隅五。”意為:當直角三角形的兩條直角邊分別為3(勾)和4(股)時,徑隅(弦)則為5。以後人們就簡單地把這個事實說成“勾三股四弦五”,根據該典故稱勾股定理為商高定理。
公元三世紀,三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,記錄於《九章算術》中“勾股各自乘,並而開方除之,即弦”,趙爽創製了一幅“勾股圓方圖”,用數形結合得到方法,給出了勾股定理的詳細證明。後劉徽在劉徽注中亦證明了勾股定理。
在中國清朝末年,數學家華蘅芳提出了二十多種對於勾股定理證法。
Q6:勾股定理是什麽?
勾股定理:
勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理(Pythagoras
Theorem)。是一個基本的幾何定理,傳統上認為是由古希臘的畢達哥拉斯所證明。據說畢達哥拉斯證明了這個定理後,即斬了百頭牛作慶祝,因此又稱“百牛定理”。在中國,《周髀算經》記載了勾股定理的一個特例,相傳是在商代由商高發現,故又有稱之為商高定理;三國時代的趙爽對《周髀算經》內的勾股定理作出了詳細注釋,作為一個證明。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。
在一個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和。如果直角三角形兩直角邊分別為a、b,斜邊為c,那麽a的平方+b的平方=c的平方,即b*b=c*c
推廣:把指數改為n時,等號變為小於號
當三角形為鈍角時,那麽a的平方+b的平方〈c的平方,即a*a+b*b〈c*c
當三角形為銳角時,那麽a的平方+b的平方〉c的平方,即a*a+b*b〉c*c
據考證,人類對這條定理的認識,少說也超過
4000
年
勾股數:是指能組成a^+b^=c^的三個正整數稱為勾股數.
關於勾股定理是什麽和勾股定理是什麽時候出現是誰發現的的介紹到此就結束了,不知道你從中找到你需要的信息了嗎?如果你還想了解更多這方麵的信息,記得收藏關注本站。
查看更多關於勾股定理是什麽的詳細內容...